Relative representation theory – Harmonic analysis over spherical varieties

A. Aizenbud

Weizmann Institute of Science

http://aizenbud.org
Observation

Representation theory of G

\[\updownarrow \]

Harmonic analysis on G w.r.t. the two sided action of G \times G

Conclusion

Let G act on a space X. One can consider harmonic analysis over X (i.e. the study of the G representation $F(X)$) as a generalization of representation theory.

Example

Schur's lemma is analogous to the Gelfand property:

$\forall \pi \in \text{irr}(G) : \langle F(X), \pi \rangle \leq 1$

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel acts with finitely many orbits on X).

Then $\sup F$ is a finite or local field ($\sup \rho \in \text{irr}(G(F)) \langle F(X), \rho \rangle < \infty$).
Observation

Representation theory of G

\[\iff \]

Harmonic analysis on G w.r.t. the two sided action of $G \times G$

Conclusion

Let G act on a space X. One can consider harmonic analysis over X (i.e. the study of the G representation $F(X)$) as a generalization of representation theory.

Example

Schur's lemma is analogous to the Gelfand property:

\[\forall \pi \in \text{irr}(G) : \langle F(X), \pi \rangle \leq 1 \]

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel acts with finitely many orbits on X).

Then $\sup F$ is a finite or local field

\[\sup_{\rho \in \text{irr}(G(F))} \langle F(X), \rho \rangle < \infty. \]
Observation

Representation theory of G
\[\uparrow \]
Harmonic analysis on G w.r.t. the two sided action of G \times G

Conclusion

Let G act on a space X. One can consider harmonic analysis over X (i.e. the study of the G representation \(F(X)\)) as a generalization of representation theory.

Example

Schur’s lemma is analogous to the Gelfand property:

\[
\forall \pi \in \text{irr}(G) : \langle F(X), \pi \rangle \leq 1
\]
Observation

Representation theory of G

\iff

Harmonic analysis on G w.r.t. the two sided action of $G \times G$

Conclusion

Let G act on a space X. One can consider harmonic analysis over X (i.e. the study of the G representation $F(X)$) as a generalization of representation theory.

Example

Schur’s lemma is analogous to the Gelfand property:

$\forall \pi \in \text{irr}(G) : \langle F(X), \pi \rangle \leq 1$

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel acts with finitely may orbits on X).
Observation

Representation theory of G
\[\iff\]
Harmonic analysis on G w.r.t. the two sided action of G \times G

Conclusion

Let G act on a space X. One can consider harmonic analysis over X (i.e. the study of the G representation \(F(X)\)) as a generalization of representation theory.

Example

Schur’s lemma is analogous to the Gelfand property:
\[\forall \pi \in \text{irr}(G) : \langle F(X), \pi \rangle \leq 1\]

Conjecture

Let G be a reductive algebraic group scheme and X be a spherical G space (i.e. over any algebraically closed field, the Borel acts with finitely many orbits on X). Then

\[
\sup_{F \text{ is a finite or local field}} \left(\sup_{\rho \in \text{irr}(G(F))} \langle F(X), \rho \rangle \right) < \infty.
\]