Counting representations of arithmetic groups and points of schemes.

A. Aizenbud

Weizmann Institute of Science

Joint with: Nir Avni

http://www.wisdom.weizmann.ac.il/~aizenr/
How many irreducible representations of dimension n does $SL_d(\mathbb{Z})$ have?
How many irreducible representations of dimension n does $SL_d(\mathbb{Z})$ have?

Definition

$$\zeta_G(s) = \sum_{\pi \in \text{irr} G} \dim \pi^{-s}$$
How many irreducible representations of dimension n does $SL_d(\mathbb{Z})$ have?

Definition

$$
\zeta_G(s) = \sum_{\pi \in \text{irr} G} \dim \pi^{-s}
$$

When does $\zeta_G(s)$ converge?
How many irreducible representations of dimension n does $SL_d(\mathbb{Z})$ have?

Definition

$$\zeta_G(s) = \sum_{\pi \in \text{irr} G} \dim \pi^{-s}$$

When does $\zeta_G(s)$ converge?

Theorem (A.-Avni 2014)

*Let G be a semi-simple group defined over \mathbb{Z} whose \mathbb{Q}-split rank is > 1.***
How many irreducible representations of dimension n does $SL_d(\mathbb{Z})$ have?

Definition

$$\zeta_G(s) = \sum_{\pi \in \text{irr } G} \dim \pi^{-s}$$

When does $\zeta_G(s)$ converge?

Theorem (A.-Avni 2014)

Let G be a semi-simple group defined over \mathbb{Z} whose \mathbb{Q}-split rank is > 1. Then $\zeta_G(\mathbb{Z})(40)$ converges.
Theorem (Lubotzky-Larsen 2007)

Let $d > 2$. Any irreducible representation π of $\text{SL}_d(\mathbb{Z})$ can be written as

$$\pi = \pi_{\text{fin}} \otimes \pi_{\text{alg}},$$

where π_{fin} factors through $\text{SL}_d(\mathbb{Z}/N\mathbb{Z})$ and π_{alg} extends to an algebraic representation of $\text{SL}_d(\mathbb{C})$.

Corollary

$$\zeta_{\text{SL}_d(\mathbb{Z})}(s) = \zeta_{\text{SL}_d(\mathbb{C})}(s) = \zeta_{\text{SL}_d(\hat{\mathbb{Z}})}(s) = \prod_p \zeta_{\text{SL}_d(\mathbb{Z}_p)}(s).$$

To show that $\zeta_G(\mathbb{Z})(s)$ converges, enough to show that $\zeta_G(\mathbb{C})(s)$ converges, and $\zeta_G(\mathbb{Z}/N\mathbb{Z})(s)$ is bounded when n varies.
Theorem (Lubotzky-Larsen 2007)

Let $d > 2$. Any irreducible representation π of $\text{SL}_d(\mathbb{Z})$ can be written as

$$\pi = \pi_{\text{fin}} \otimes \pi_{\text{alg}},$$

where π_{fin} factors through $\text{SL}_d(\mathbb{Z}/N\mathbb{Z})$ and π_{alg} extends to an algebraic representation of $\text{SL}_d(\mathbb{C})$.

Corollary

$$\zeta_{\text{SL}_d(\mathbb{Z})} = \zeta_{\text{SL}_d(\mathbb{C})} \zeta_{\text{SL}_d(\hat{\mathbb{Z}})} = \zeta_{\text{SL}_d(\mathbb{C})} \prod_p \zeta_{\text{SL}_d(\mathbb{Z}_p)}$$
Theorem (Lubotzky-Larsen 2007)

Let \(d > 2 \). Any irreducible representation \(\pi \) of \(SL_d(\mathbb{Z}) \) can be written as

\[
\pi = \pi_{\text{fin}} \otimes \pi_{\text{alg}},
\]

where \(\pi_{\text{fin}} \) factors through \(SL_d(\mathbb{Z}/N\mathbb{Z}) \) and \(\pi_{\text{alg}} \) extends to an algebraic representation of \(SL_d(\mathbb{C}) \).

Corollary

\[
\zeta_{SL_d(\mathbb{Z})} = \zeta_{SL_d(\mathbb{C})} \zeta_{SL_d(\hat{\mathbb{Z}})} = \zeta_{SL_d(\mathbb{C})} \prod_p \zeta_{SL_d(\mathbb{Z}_p)}
\]

Corollary

To show that \(\zeta_{G(\mathbb{Z})}(s) \) converges,
Application of CSP

Theorem (Lubotzky-Larsen 2007)

Let $d > 2$. Any irreducible representation π of $\text{SL}_d(\mathbb{Z})$ can be written as

$$\pi = \pi_{\text{fin}} \otimes \pi_{\text{alg}},$$

where π_{fin} factors through $\text{SL}_d(\mathbb{Z}/N\mathbb{Z})$ and π_{alg} extends to an algebraic representation of $\text{SL}_d(\mathbb{C})$.

Corollary

$$\zeta_{\text{SL}_d(\mathbb{Z})} = \zeta_{\text{SL}_d(\mathbb{C})}\zeta_{\text{SL}_d(\hat{\mathbb{Z}})} = \zeta_{\text{SL}_d(\mathbb{C})}\prod_p \zeta_{\text{SL}_d(\mathbb{Z}_p)}$$

Corollary

To show that $\zeta_{G(\mathbb{Z})}(s)$ converges, enough to show that $\zeta_{G(\mathbb{C})}(s)$ converges, and
Theorem (Lubotzky-Larsen 2007)

Let \(d > 2 \). Any irreducible representation \(\pi \) of \(SL_d(\mathbb{Z}) \) can be written as

\[
\pi = \pi_{\text{fin}} \otimes \pi_{\text{alg}},
\]

where \(\pi_{\text{fin}} \) factors through \(SL_d(\mathbb{Z}/N\mathbb{Z}) \) and \(\pi_{\text{alg}} \) extends to an algebraic representation of \(SL_d(\mathbb{C}) \).

Corollary

\[
\zeta_{SL_d(\mathbb{Z})} = \zeta_{SL_d(\mathbb{C})} \zeta_{SL_d(\hat{\mathbb{Z}})} = \zeta_{SL_d(\mathbb{C})} \prod_p \zeta_{SL_d(\mathbb{Z}_p)}
\]

Corollary

To show that \(\zeta_{G(\mathbb{Z})}(s) \) converges, enough to show that \(\zeta_{G(\mathbb{C})}(s) \) converges, and \(\zeta_{G(\mathbb{Z}/N\mathbb{Z})}(s) \) is bounded when \(n \) varies.
Frobenius Formula

Theorem (Frobenius 1896)

Let H be a finite group. Then

$$\zeta_H(2) = \sum_{\pi \in \text{irr}(H)} \left(\dim \pi \right)^2 = \#H$$

$$\zeta_H(0) = \sum_{\pi \in \text{irr}(H)} \left(\dim \pi \right)^0 = \#(H//H) = \#\{ (g, h) \in H^2 \mid [g, h] = 1 \}$$

A. Aizenbud

Counting representations and points
Theorem (Frobenius 1896)

Let H be a finite group.
Theorem (Frobenius 1896)

Let H be a finite group. Then

\[\zeta_H(2) = \sum_{\pi \in \text{irr } H} (\dim \pi)^2 = \# H \]

\[\zeta_H(0) = \sum_{\pi \in \text{irr } H} (\dim \pi)^0 = \# (H//H) \]

\[\zeta_H(2n-2) = \# \left\{ (g_1, h_1, \ldots, g_n, h_n) \in H^{2n} \mid [g_1, h_1] \cdots [g_n, h_n] = 1 \right\} \]
Theorem (Frobenius 1896)

Let H be a finite group. Then

$$\zeta_H(2) = \sum_{\pi \in \text{irr} H} (\dim \pi)^2 = \#H$$

$$\zeta_H(0) = \sum_{\pi \in \text{irr} H} (\dim \pi)^0 = \#(H//H) = \#\{(g, h) \in H^2 | [g, h] = 1\}$$

$$\zeta_H(2n-2) = \#\{(g_1, h_1, \ldots, g_n, h_n) \in H^{2n} | [g_1, h_1] \cdots [g_n, h_n] = 1\}$$
Theorem (Frobenius 1896)

Let H be a finite group. Then

$$\zeta_H(2) = \sum_{\pi \in \text{irr} H} (\dim \pi)^2 = \# H$$
Theorem (Frobenius 1896)

Let H be a finite group. Then

- $\zeta_H(2) = \sum_{\pi \in \text{irr}H} (\dim \pi)^2 = \#H$
- $\zeta_H(0) = \sum_{\pi \in \text{irr}H} (\dim \pi)^0 = \#(H//H)$
Theorem (Frobenius 1896)

Let H be a finite group. Then

- $\zeta_H(2) = \sum_{\pi \in \text{irr } H} (\dim \pi)^2 = \# H$
- $\zeta_H(0) = \sum_{\pi \in \text{irr } H} (\dim \pi)^0 = \# (H//H) = \frac{\# \{(g,h) \in H^2 | [g,h] = 1\}}{\# H}$
Theorem (Frobenius 1896)

Let H be a finite group. Then

- $\zeta_H(2) = \sum_{\pi \in \text{irr} H} (\dim \pi)^2 = \# H$
- $\zeta_H(0) = \sum_{\pi \in \text{irr} H} (\dim \pi)^0 = \# (H//H) = \frac{\# \{(g,h) \in H^2 | [g,h] = 1\}}{\# H}$
- ...
Theorem (Frobenius 1896)

Let H be a finite group. Then

- $\zeta_H(2) = \sum_{\pi \in \text{irr} H} (\dim \pi)^2 = \# H$
- $\zeta_H(0) = \sum_{\pi \in \text{irr} H} (\dim \pi)^0 = \# (H/\!/H) = \frac{\# \{(g,h) \in H^2 | [g,h]=1\}}{\# H}$
- ...
- $\zeta_H(2n-2) = \frac{\# \{(g_1,h_1,...g_n,h_n) \in H^{2n} | [g_1,h_1]...[g_n,h_n]=1\}}{\# H^{2n-1}}$
Product of commutators of random elements

The convergence of $\zeta_G(Z)^{(40)}$ is equivalent to:

Theorem (A.-Avni 2014)

Let $n > 20$, and let

$$
\text{Def}_{n, G} = \{ (g_1, h_1, \ldots, g_n, h_n) \in G^n \mid [g_1, h_1] \cdots [g_1, h_1] = 1 \} = \text{Hom}(\pi_1(\Sigma^n), G).
$$

Then there exists a constant C s.t. for any integer k we have:

$$
\# \text{Def}_{n, G}(\mathbb{Z}/N\mathbb{Z}) < C \cdot \# G^{2n-1} - 1
$$
or equivalently:

Theorem (A.-Avni 2014)

For any $A \subset G(\mathbb{Z}/N\mathbb{Z})$:

$$
\text{Prob}([g_1, h_1] \cdots [g_n, h_n] \in A) < C \cdot \text{Prob}(g \in A),
$$
for random elements $g, g_1, \ldots, g_n \in G(\mathbb{Z}/N\mathbb{Z})$.

Product of commutators of random elements

The convergence of $\zeta_{G(\mathbb{Z})}(40)$ is equivalent to:

Theorem (A.-Avni 2014)

Let $n > 20$, and let

$$\text{Def}_{n, G} = \{ (g_1, h_1, \ldots, g_n, h_n) \in G^{2n} | [g_1, h_1] \cdots [g_1, h_1] = 1 \} = \text{Hom}(\pi_1(\Sigma_n), G).$$

Then there exists a constant C s.t. for any integer k we have:

$$\# \text{Def}_{n, G}(\mathbb{Z}/N\mathbb{Z}) < C \cdot \# G^{2n-1},$$

or equivalently:

Theorem (A.-Avni 2014)

For any $A \subset G(\mathbb{Z}/N\mathbb{Z})$:

$$\text{Prob}([g_1, h_1] \cdots [g_n, h_n] \in A) < C \cdot \text{Prob}(g \in A),$$

for random elements $g, g_1, \ldots, g_n \in G(\mathbb{Z}/N\mathbb{Z})$.
The convergence of $\zeta_{G(\mathbb{Z})}(40)$ is equivalent to:

Theorem (A.-Avni 2014)

Let $n > 20$, and let

$$\text{Def}_{n,G} = \{(g_1, h_1, \ldots, g_n, h_n) \in G^{2n} | [g_1, h_1] \cdots [g_1, h_1] = 1\} = \text{Hom}(\pi_1(\Sigma_n), G).$$

Then there exists a constant C s.t. for any integer k we have:

$$\#\text{Def}_{n,G}(\mathbb{Z}/N\mathbb{Z}) < C \cdot \#G^{2n-1}$$
The convergence of $\zeta_{G(\mathbb{Z})}(40)$ is equivalent to:

Theorem (A.-Avni 2014)

Let $n > 20$, and let

$$\text{Def}_{n,G} = \{(g_1, h_1, \ldots, g_n, h_n) \in G^{2n} | [g_1, h_1] \cdots [g_1, h_1] = 1\} = \text{Hom}(\pi_1(\Sigma_n), G).$$

Then there exists a constant C s.t. for any integer k we have:

$$\#\text{Def}_{n,G}(\mathbb{Z}/N\mathbb{Z}) < C \cdot \#G^{2n-1}$$

or equivalently:

Theorem (A.-Avni 2014)

For any $A \subset G(\mathbb{Z}/N\mathbb{Z})$:

$$\text{Prob}([g_1, h_1] \cdots [g_n, h_n] \in A) < C \cdot \text{Prob}(g \in A),$$

for random elements $g, g_1 \ldots g_n \in G(\mathbb{Z}/N\mathbb{Z})$.
Theorem (Cluckers-Loser ~ 2006)

Let X be an irreducible local complete intersection scheme of finite type.
Theorem (Cluckers-Loser \(\sim\) 2006)

Let \(X\) be an irreducible local complete intersection scheme of finite type. Let \(n_X(p, k) = \frac{\#X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X}\) and \(m_X(p, k) = \frac{\#X(\mathbb{F}_p[t]/t^k)}{p^k \dim X}\). Then for almost any \(p\):

\[
m_X(p, k) = n_X(p, k).
\]
Theorem (Cluckers-Loser ~ 2006)

Let X be an irreducible local complete intersection scheme of finite type. Let $n_X(p, k) = \frac{\#X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X}$ and $m_X(p, k) = \frac{\#X(\mathbb{F}_p[t]/t^k)}{p^k \dim X}$. Then for almost any p:

$$m_X(p, k) = n_X(p, k).$$

Theorem (A.-Avni 2014)

Under the conditions above TFAE:
Number of points over finite rings

Theorem (Cluckers-Loser \(\sim\) 2006)

Let \(X\) be an irreducible local complete intersection scheme of finite type. Let \(n_X(p, k) = \frac{\# X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X}\) and \(m_X(p, k) = \frac{\# X(F_p[t]/t^k)}{p^k \dim X}\). Then for almost any \(p\):

\[m_X(p, k) = n_X(p, k). \]

Theorem (A.-Avni 2014)

Under the conditions above TFAE:

- \(X\) has rational singularities.
Number of points over finite rings

Theorem (Cluckers-Loser ~ 2006)

Let \(X \) be an irreducible local complete intersection scheme of finite type. Let \(n_X(p, k) = \frac{\# X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X} \) and \(m_X(p, k) = \frac{\# X(\mathbb{F}_p[t]/t^k)}{p^k \dim X} \). Then for almost any \(p \):

\[
m_X(p, k) = n_X(p, k).
\]

Theorem (A.-Avni 2014)

Under the conditions above TFAE:

- \(X \) has rational singularities.
- \(\lim_{p \to \infty} n_X(p, k) = 1 \), for any \(k \).
Theorem (Cluckers-Loser ~ 2006)

Let X be an irreducible local complete intersection scheme of finite type. Let $n_X(p, k) = \frac{\# X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X}$ and $m_X(p, k) = \frac{\# X(\mathbb{F}_p[t]/t^k)}{p^k \dim X}$. Then for almost any p:

$$m_X(p, k) = n_X(p, k).$$

Theorem (A.-Avni 2014)

Under the conditions above TFAE:

- X has rational singularities.
- $\lim_{p \to \infty} n_X(p, k) = 1$, for any k.
- $n_X(p, k) - 1 = O\left(\frac{1}{\sqrt{p}}\right)$, for almost all p.
Let X be an irreducible local complete intersection scheme of finite type. Let $n_X(p, k) = \frac{\#X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X}$ and $m_X(p, k) = \frac{\#X(\mathbb{F}_p[t]/t^k)}{p^k \dim X}$. Then for almost any p:

$$m_X(p, k) = n_X(p, k).$$

Theorem (A.-Avni 2014)

Under the conditions above TFAE:

- X has rational singularities.
- $\lim_{p \to \infty} n_X(p, k) = 1$, for any k.
- $n_X(p, k) - 1 = O\left(\frac{1}{\sqrt{p}}\right)$, for almost all p.
- $n_X(p, k) - n_X(p, 1) = O\left(\frac{1}{p}\right)$, for almost all p.

Theorem (Cluckers-Loser ~ 2006)

Let X be an irreducible local complete intersection scheme of finite type. Let $n_X(p, k) = \frac{\#X(\mathbb{Z}/p^k\mathbb{Z})}{p^{k \dim X}}$ and $m_X(p, k) = \frac{\#X(\mathbb{F}_p[t]/t^k)}{p^{k \dim X}}$. Then for almost any p:

$$m_X(p, k) = n_X(p, k).$$

Theorem (A.-Avni, Glazer 2017)

Under the conditions above TFAE:

- X has rational singularities.
- $\lim_{p \to \infty} n_X(p, k) = 1$, for any k.
- $n_X(p, k) - 1 = O\left(\frac{1}{\sqrt{p}}\right)$, for almost all p.
- $n_X(p, k) - n_X(p, 1) = O\left(\frac{1}{p}\right)$, for almost all p.
- For almost any p: $n_X(p, k)$ bounded.
Theorem (Cluckers-Loser ∼ 2006)

Let X be an irreducible local complete intersection scheme of finite type. Let $n_X(p, k) = \frac{\# X(\mathbb{Z}/p^k\mathbb{Z})}{p^k \dim X}$ and $m_X(p, k) = \frac{\# X(\mathbb{F}_p[t]/t^k)}{p^k \dim X}$.

Then for almost any p:

$$m_X(p, k) = n_X(p, k).$$

Theorem (A.-Avni, Glazer 2017)

Under the conditions above TFAE:

- X has rational singularities.
- $\lim_{p \to \infty} n_X(p, k) = 1$, for any k.
- $n_X(p, k) - 1 = O\left(\frac{1}{\sqrt{p}}\right)$, for almost all p.
- $n_X(p, k) - n_X(p, 1) = O\left(\frac{1}{p}\right)$, for almost all p.
- For almost any p: $n_X(p, k)$ bounded.
- For any p: $n_X(p, k)$ bounded.
Theorem (A.-Avni 2014)

Let X be a local complete intersection, reduced, absolutely irreducible scheme of finite type over \mathbb{Z}, s.t. $X_{\mathbb{Q}}$ has rational singularities. Then:

$$\text{abscissa of convergence of } \sum_{N=1}^{\infty} \frac{|X(\mathbb{Z}/N\mathbb{Z})| \cdot N^{-s}}{s} = \dim X_{\mathbb{Q}} + 1.$$

The function $P_X(s)$ can be analytically continued to $\{s | \Re(s) > \dim X_{\mathbb{Q}} + 1/2\}$.

The only pole of the continued function on the line $\Re(s) = \dim X_{\mathbb{Q}} + 1$ is a simple pole at $\dim X_{\mathbb{Q}} + 1$.
Theorem (A.-Avni 2014)

Let X be a local complete intersection, reduced, absolutely irreducible scheme of finite type over \mathbb{Z}, s.t. $X_\mathbb{Q}$ has rational singularities. Then:

- The abscissa of convergence of
 \[\Psi_X(s) := \sum_{N=1}^{\infty} |X(\mathbb{Z}/N)| \cdot N^{-s} \] is $\dim X_\mathbb{Q} + 1$.
The Igusa zeta function

Theorem (A.-Avni 2014)

Let X be a local complete intersection, reduced, absolutely irreducible scheme of finite type over \mathbb{Z}, s.t. $X_\mathbb{Q}$ has rational singularities. Then:

- **The abscissa of convergence of**
 \[\Psi_X(s) := \sum_{N=1}^{\infty} |X(\mathbb{Z}/N)| \cdot N^{-s} \] is $\dim X_\mathbb{Q} + 1$.

- **The function $\Psi_X(s)$ can be analytically continued to**
 \[\{ s \mid \Re(s) > \dim X_\mathbb{Q} + 1/2 \} \].
The Igusa zeta function

Theorem (A.-Avni 2014)

Let X be a local complete intersection, reduced, absolutely irreducible scheme of finite type over \mathbb{Z}, s.t. $X_\mathbb{Q}$ has rational singularities. Then:

- The abscissa of convergence of $\mathcal{P}_X(s) := \sum_{N=1}^{\infty} |X(\mathbb{Z}/N)| \cdot N^{-s}$ is $\dim X_\mathbb{Q} + 1$.
- The function $\mathcal{P}_X(s)$ can be analytically continued to $\{ s \mid \Re(s) > \dim X_\mathbb{Q} + 1/2 \}$.
- The only pole of the continued function on the line $\Re(s) = \dim X_\mathbb{Q} + 1$ is a simple pole at $\dim X_\mathbb{Q} + 1$.
Theorem (A.-Avni 2013)

Let $n > 20$. Then the singularities of the deformation variety $\text{Def}_{G,n}$ are rational (and complete intersection).
Rationality of the singularities of moduli spaces

Theorem (A.-Avni 2013)

Let $n > 20$. Then the singularities of the deformation variety $\text{Def}_{G,n}$ are rational (and complete intersection).

Corollary (A.-Avni 2013)

The moduli spaces of G local systems on a genus n surface have rational singularities.
\{(x, y, z)|z^2 = x^2 + y^2\} \text{ have rational singularities}

\[\Downarrow\]
\[\text{def}_{g,n} := \{(g_1, h_1, \ldots g_n, h_n) \in g^{2n}|[g_1, h_1] + \cdots + [g_1, h_1] = 0\}\]
\[\text{have rational singularities}\]

\[\Downarrow\]
\[\text{Def}_{G,n} \text{ have rational singularities at 1}\]

\[\Updownarrow\]
\[\exists m \text{ s.t.}\ \#\{(g_1, h_1, \ldots g_n, h_n) \in G(\mathbb{Z}/p^k\mathbb{Z})^{2n}| [g_1, h_1] \cdots [g_n, h_n] = 1; g_i = h_i = 1 \mod p^m\} = p^{(2n-1)(k-m)\dim G}(1 + O(p^{-\frac{1}{2}}))\]

\[\Updownarrow\]
\[\zeta_{G(\mathbb{Z}/p^k\mathbb{Z})_m}(2n - 2) = 1 + O(p^{-\frac{1}{2}})\]

\[\Updownarrow\]
\[\zeta_{G(\mathbb{Z}/p^k\mathbb{Z})}(2n - 2) = 1 + O(p^{-\frac{1}{2}})\]

\[\Updownarrow\]
\[\text{Def}_{G,n} \text{ have rational singularities}\]
Def$_G,n$ have rational singularities
Def G,n have rational singularities

\[\zeta_{G(\mathbb{Z}/p^k\mathbb{Z})}(2n-2) = \zeta_{G(\mathbb{F}_p)}(2n-2) + O(p^{-1}) \]
Def$_{G,n}$ have rational singularities

\[\zeta_{G}(\mathbb{Z}/p^k\mathbb{Z})(2n - 2) = \zeta_{G(\mathbb{F}_p)}(2n - 2) + O(p^{-1}) \]

\[\zeta_{G}(\mathbb{Z}/p^k\mathbb{Z})(2n - 2) = 1 + O(p^{-1}) \]
Def\(_{G,n}\) have rational singularities

\[\zeta_{G(\mathbb{Z}/p^k\mathbb{Z})}(2n - 2) = \zeta_{G(\mathbb{F}_p)}(2n - 2) + O(p^{-1})\]

\[\zeta_{G(\mathbb{Z}/p^k\mathbb{Z})}(2n - 2) = 1 + O(p^{-1})\]

\[\sup_N \zeta_{G(\mathbb{Z}/N\mathbb{Z})}(2n - 2 + \varepsilon) < \infty\]
Def \(G, n \) have rational singularities

\[
\zeta_{G(\mathbb{Z}/p^k\mathbb{Z})}(2n - 2) = \zeta_{G(\mathbb{F}_p)}(2n - 2) + O(p^{-1})
\]

\[
\sup_{N} \zeta_{G(\mathbb{Z}/N\mathbb{Z})}(2n - 2 + \varepsilon) < \infty
\]
Def \(G, n \) have rational singularities

\[
\zeta_{G, p^k}(2n-2) = \zeta_{G, \mathbb{F}_p}(2n-2) + O(p^{-1})
\]

\[
\zeta_{G, p^k}(2n-2) = 1 + O(p^{-1})
\]

\[
\sup_N \zeta_{G, N}(2n-2 + \varepsilon) < \infty
\]

\[
\zeta_{G}(2n-2 + \varepsilon) < \infty
\]
We conclude from the above results:
We conclude from the above results:

Theorem (A.-Avni 2014)

We have the following implications:

$$
\zeta_{G}(\mathbb{Z}) (2n - 2) < \infty.
$$

$$
\Downarrow
$$

$$
\zeta_{G}(\mathbb{Z}_p) (2n - 2) < \infty \text{ for any } p.
$$

$$
\Uparrow
$$

Def G, n has rational singularities.

$$
\zeta_{G}(\mathbb{Z}) (2n - 2 + \varepsilon) < \infty.
$$

All of the above happens for $n > 20$.
We conclude from the above results:

Theorem (A.-Avni 2014)

We have the following implications:

- \(\zeta_{G(\mathbb{Z})}(2n - 2) < \infty. \)
We conclude from the above results:

Theorem (A.-Avni 2014)

We have the following implications:

- \(\zeta_{G(\mathbb{Z})}(2n - 2) < \infty. \)
- \(\zeta_{G(\mathbb{Z}_p)}(2n - 2) < \infty \) for any \(p \).
We conclude from the above results:

Theorem (A.-Avni 2014)

We have the following implications:

- $\zeta_{G(\mathbb{Z})}(2n - 2) < \infty$.
- $\zeta_{G(\mathbb{Z}_p)}(2n - 2) < \infty$ for any p.
- $\text{Def}_{G,n}$ has rational singularities.
We conclude from the above results:

Theorem (A.-Avni 2014)

We have the following implications:

- $\zeta_{G(\mathbb{Z})}(2n - 2) < \infty$.
- $\zeta_{G(\mathbb{Z})}(2n - 2 + \varepsilon) < \infty$ for any p.
- $\text{Def}_{G,n}$ has rational singularities.

All of the above happens for $n > 20$.
We conclude from the above results:

Theorem (A.-Avni 2014)

We have the following implications:

- $\zeta_{G(\mathbb{Z})}(2n - 2) < \infty$.
- $\zeta_{G(\mathbb{Z}_p)}(2n - 2) < \infty$ for any p.
- $\text{Def}_{G,n}$ has rational singularities.
- $\zeta_{G(\mathbb{Z})}(2n - 2 + \varepsilon) < \infty$.

All of the above happens for $n > 20$.
Pushforward of smooth measures

Let \(\Phi_{G, n} : G_2^n \to G \) be defined by:

\[
\Phi_{G, n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].
\]

Let \(\mu \) be the Haar measure on \(G(\mathbb{Z}_p) \).

The convergence of \(\zeta_{G(\mathbb{Z}_p)}(2^n - 2) \) is equivalent to the fact that \(\Phi(\mu) = f \cdot \mu \) for a continuous function \(f \).

Theorem (A.-Avni, 2013)

Let:

\[m_{X, \phi} \to Y \]

s.t. \(\phi \) is a flat morphism of smooth algebraic varieties over a local field \(F \), s.t. all its fibers are of rational singularities (in what follows: FRS morphism).

\(m \) is a Schwartz (i.e. compactly supported locally Haar) measure on \(X(\mathbb{F}) \).

Then \(\phi^* m \) has continuous density.
Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$
Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$.

Theorem (A.-Avni, 2013)

Let:

- m be a Schwartz (i.e. compactly supported locally Haar) measure on $X(F)$.
- $\phi : X \to Y$ be a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).

Then $\phi^* (m)$ has continuous density.
Pushforward of smooth measures

Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$. The convergence of $\zeta_{G(\mathbb{Z}_p)}(2n-2)$ is equivalent to the fact that $\Phi(\mu) = f \cdot \mu$ for a continuous function f.

Theorem (A.-Avni, 2013)

Let:

$m : X \to Y$ s.t. ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).

m is a Schwartz (i.e. compactly supported locally Haar) measure on $X(F)$.

Then $\phi_*(m)$ has continuous density.
Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$. The convergence of $\zeta_{G(\mathbb{Z}_p)}(2n - 2)$ is equivalent to the fact that $\Phi(\mu) = f \cdot \mu$ for a continuous function f.

Theorem (A.-Avni, 2013)

Let:

$$m \quad X \overset{\phi}{\to} Y$$

s.t.
Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$. The convergence of $\zeta_{G(\mathbb{Z}_p)}(2n - 2)$ is equivalent to the fact that $\Phi(\mu) = f \cdot \mu$ for a continuous function f.

Theorem (A.-Avni, 2013)

Let:

$$\begin{array}{ccc}
\mu & \phi & Y \\
X & \phi & Y
\end{array}$$

s.t.

- ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities.
Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$. The convergence of $\zeta_{G(\mathbb{Z}_p)}(2n - 2)$ is equivalent to the fact that $\Phi(\mu) = f \cdot \mu$ for a continuous function f.

Theorem (A.-Avni, 2013)

Let:

$$\begin{array}{ccc}
X & \xrightarrow{\phi} & Y \\
\downarrow{m} & & \\
X & \phi & Y
\end{array}$$

s.t.

- ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).
Pushforward of smooth measures

Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$. The convergence of $\zeta_{G(\mathbb{Z}_p)}(2n - 2)$ is equivalent to the fact that $\Phi(\mu) = f \cdot \mu$ for a continuous function f.

Theorem (A.-Avni, 2013)

Let:

$$m \overset{\phi}{\to} Y$$

s.t.

- ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).
- m is a Schwartz (i.e. compactly supported locally Haar) measure on $X(F)$.
Let $\Phi_{G,n} : G^{2n} \to G$ be defined by:

$$\Phi_{G,n}(g_1, h_1, \ldots, g_n, h_n) := [g_1, h_1] \cdots [g_n, h_n].$$

Let μ be the Haar measure on $G(\mathbb{Z}_p)$. The convergence of $\zeta_{G(\mathbb{Z}_p)}(2n - 2)$ is equivalent to the fact that $\Phi(\mu) = f \cdot \mu$ for a continuous function f.

Theorem (A.-Avni, 2013)

Let:

$$\begin{align*}
X & \overset{\phi}{\to} Y \\
m & \in \text{X}(F)
\end{align*}$$

s.t.

- ϕ is a flat morphism of smooth algebraic varieties over a local field F, s.t. all its fibers are of rational singularities (in what follows: FRS morphism).
- m is a Schwartz (i.e. compactly supported locally Haar) measure on $X(F)$.

Then $\phi_*(m)$ has continuous density.
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \}
$A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon\}$

![Graph showing the region A and its area $\text{Area}(A)/\varepsilon$ as a function of ε.](image)
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}

\frac{\text{Area}(A)}{\varepsilon}

\begin{align*}
\text{Area}(A)/\varepsilon & \quad 0 & 0.02 & 0.04 & 0.06 & 0.08 \\
0 & 5 & 10 & 15 & 20 & 25
\end{align*}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
A = \{x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon \}
A = \{x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon\}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}\}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\(A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \)
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
$A = \{ x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon \}$
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon\}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

\[\frac{\text{Area}(A)}{\varepsilon} \]

![Graph showing the area of set A as a function of ε.](image_url)
$A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

The graph shows a region defined by the given inequality, along with a plot of the ratio of the area A to ε against ε. The area decreases as ε increases, approaching zero as ε approaches infinity.
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
$A = \{ x, y : |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \}$
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

Area(A)/\varepsilon

0 0.02 0.04 0.06 0.08

0 5 10 15 20 25

ε
$A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

\[
\frac{\text{Area}(A)}{\varepsilon}
\]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
$A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
$A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

$\frac{\text{Area}(A)}{\varepsilon}$

Graph showing the area A as a function of ε.
\[A = \{x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon\}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x,y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon\}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
$A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \}$
\[A = \{x,y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \epsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon\}
A = \{ x, y \text{ s.t. } |x^2+y^2| < 1 \text{ and } |x^2-y^2| < \varepsilon \}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

\[
\frac{\text{Area}(A)}{\varepsilon}
\]
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$

Area(A)/\varepsilon

0 0.02 0.04 0.06 0.08

0 5 10 15 20 25

ε
$A = \{x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon \}$
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}
A = \{x,y \text{ s.t. } |x^2+y^2|<1 \text{ and } |x^2-y^2|<\varepsilon\}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}

\frac{\text{Area}(A)}{\varepsilon}
\[A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \} \]
A = \{x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon\}
$A = \{ x, y \text{ s.t. } |x^2 + y^2| < 1 \text{ and } |x^2 - y^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \} \]
$V = \{ x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \}$
$V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon\}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\epsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\}$
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \}$
\[V = \{x,y,z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\} \]
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\}$
\[V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \} \]
$V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\epsilon\}$
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\} \]
$V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\}$
$V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\}$
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \} \]
V = \{x, y, z \text{ s.t.} |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon\}$
\[V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]

\[\frac{Vol(V)}{\varepsilon} \]

\begin{tabular}{c c c c c}
0.02 & 0.04 & 0.06 & 0.08 & 0.10 \\
0 & 5 & 10 & 15 & 20 \\
\end{tabular}
V = {x,y,z s.t. |x^2+y^2+z^2| < 1 and |x^2+y^2-z^2| < \varepsilon}
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \epsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \} \]
\[V = \{ x,y,z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \}
\[V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \epsilon \} \]
$V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \epsilon\}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
$V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \epsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\epsilon \}$

$\frac{\text{Vol}(V)}{\epsilon}$ vs ϵ
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \}$
\(V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \)
$V = \{x,y,z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon\}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
\[V = \{ x, y, z \ s.t. \ |x^2 + y^2 + z^2| < 1 \ \text{and} \ |x^2 + y^2 - z^2| < \epsilon \} \]
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2|<1 \text{ and } |x^2+y^2-z^2|<\varepsilon \} \]
$V = \{x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2+y^2+z^2| < 1 \text{ and } |x^2+y^2-z^2| < \varepsilon \}$
$V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \}$
\[V = \{ x, y, z \text{ s.t. } |x^2 + y^2 + z^2| < 1 \text{ and } |x^2 + y^2 - z^2| < \varepsilon \} \]
Jet schemes and rational singularities

Definition

For a scheme X defined over k, the jet scheme $\text{jet}_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \sim \text{jet}_n(X)(k)$.

Theorem (Mustata 2001)

Assume that X is a local complete intersection connected variety. TFAE:

1. X is irreducible and has rational singularities.
2. The jet schemes of X are irreducible.
Jet schemes and rational singularities

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Theorem (Mustata 2001)

Assume that X is a local complete intersection connected variety. TFAE:

- X is irreducible and has rational singularities.
- The jet schemes of X are irreducible.
Jet schemes and rational singularities

Definition

For a scheme X defined over k, the jet scheme $\text{jet}_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong \text{jet}_n(X)(k)$.

Theorem (Mustata 2001)

Assume that X is a local complete intersection connected variety. TFAE:

- X is irreducible and has rational singularities.
- The jet schemes of X are irreducible.
Jet schemes and rational singularities

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Theorem (Mustata 2001)

Assume that X is a local complete intersection connected variety. TFAE:
- X is irreducible and has rational singularities.
Jet schemes and rational singularities

Definition

For a scheme X defined over k, the jet scheme $jet_n(X)$ is the natural scheme defined over k s.t. $X(k[t]/t^n) \cong jet_n(X)(k)$.

Theorem (Mustata 2001)

Assume that X is a local complete intersection connected variety. TFAE:

- X is irreducible and has rational singularities.
- The jet schemes of X are irreducible.
\[\lim_{p \to \infty} m_X(p, k) = 1 \]

\[\sup_{k} n_X(p, k) < \infty \]

\[\lim_{q \to \infty} \sup_{k} h_X(q, k) = 1 \]

X has rat. sing.

Continuity Criterion

Mustata, L-W, Chebotarev

Continuity Criterion

Mustata Thm., L-W Bounds

Obvious

Chebotarev thm.,
L-W Bounds,
Motivic int.

Obvious

Obvious