Theorem 1 Hironaka. Let X be an affine Nash manifold. Then there exists a com-

pact affine nonsingular algebraic variety Y D X s.t. Y = XWUDWU where X and U
k

are open and D = |J D; where D; C'Y are closed Nash submanifolds of codimension
i=1

1 and all the intersections are normal, i.e. everyy € Y has a neighborhood V with

a diffeomorphism ¢ : V. — R"™ s.t. ¢(D; N V) is either a coordinate hyperplane or

empty.

Theorem 2 Local triviality of Nash manifolds. Any Nash manifold can be covered
by finite number of open submanifolds Nash diffeomorphic to R™.

Theorem 3 Let X be a Nash manifold. Then H(X),H!(X),H;(X) are finite di-
mensional.



Theorem 4 Let X be an affine Nash manifold. Consider
the De-Rham complex of X with compactly supported coefficients

DR,(X):0— C®(X,0%) — ... = C(X,Q%) — 0,
the De-Rham complex of X with Schwartz coefficients
DRg(X):0— S(X,0%) — ... — S(X, Q%) — 0,

and the natural map i : DR.(X) — DRg(X).
Then i 1s a quasiisomorphism, i.e. it induces an isomorphism on the cohomologies.

Theorem 5 Let X be an affine Nash manifold. Consider
the De-Rham complex of X with coefficients in classical generalized functions, i.e.
functionals on compactly supported densities

DRG(X):0— C7°(X,0%) — ... = C7°(X, Q%) — 0,

the De-Rham complex of X with coefficients in generalized Schwartz functions
DRgs(X):0— C™(X,0%) — ... = C™®(X,Q%) — 0,

and the natural map i : DRgg(X) — DRa(X). Then i is a quasiisomorphism.

Theorem 6 Let X be an affine Nash manifold of dimension n. Then
H'(DRgs(X)) = H'(X)

Hi(DRg(X)) = H(X)

H{(TDRs(X)) = Hy(X)

and the standard pairing between S(X, TV ") and GS(X, Q) gives an isomorphism
between H'(DRgs(X)) and (H(TDRs(X)))*.



Definition 1 Let X and Y be Nash manifolds and let £/ and F' be Nash bundles over
them. We define integration by fibers IF : S(X x Y, EKF) x GS(Y, F) — I'(X, E)
(where I'(X, E') is the space of all global sections of E over X) by I[F({,n)(x) =

(€l a3y )-

Proposition 7 Im(IF) C S(X,E), and IF : S(X x Y,EX F) x GS(Y,F) —
S(X, E) is continuous.

Definition 2 Let X and Y be Nash manifolds an(jv let £ and F' be Nash bundles over
them. We define IF' : GS(X xY,EXF)x S(Y,F) — GS(X, E) by IF'(&,n)(f) =
EMRf).

Theorem 8 Let X be a Nash manifold and Y be an affine Nash manifold of di-
mensions m and n correspondingly. Denote F' = X x Y. Identifying TQ%_X with
(X xR)XTQ (where X xR is interpreted as the trivial bundle on X ) and Q¥ ™" with

Y/T\ZTY we get bilinear form IF : S(F,TQ ) x GS(Y, Q") — S(X). Then IF in-
duces a non degenerate pairing between H'(TDRg(F — X)) and H"(Y') valued in
S(X) i.e. gives an isomorphism between H(TDRg(F — X)) and H"(Y)*®S5(X).

Theorem 9 Let X be a Nash manifold and Y be an affine Nash manifold of di-
mensions m and n correspondingly. Denote F' = X x Y. Then the bilinear
form IF' : GS(F, Q% ) x S(Y, TQ%U") — GS(X) gives an isomorphism between
H(DRgs(F — X)) and H,_;(Y)* ® GS(X).



Theorem 10 Let p : ' — X be a Nash locally trivial fibration and E be a Nash
bundle over X. Then H*(DRE(F — X)) = S(X,H¥}F — X)® E).

Theorem 11 Let p : ' — X be a Nash locally trivial fibration and E be a Nash
bundle over X. Then H*(DREG(F — X)) 2 GS(X,H*(F — X)® E).

Definition 3 Let f : X — Y be a Nash map of Nash manifolds. It is called a Nash

locally trivial fibration if there exist a Nash manifold M and surjective submersive

Nash map g : M — Y s.t. the basechange h : X x M — M is trivializable, i.e. there
Y

exists a Nash manifold Z and an isomorphism k: X x M — M x Z st. mok =h
Y

where m: M x Z — M is the standard projection.

Theorem 12 Let M and N be Nash manifolds and s : M — N be a surjective

submersive Nash map. Then locally it has a Nash section, i.e. there exists a finite
k

open cover N = |J U; s.t. s has a Nash section on each Uj.
i=1

Proposition 13 Let M and N be Nash manifolds and f : M — N be a Nash
submersion. Let L C N be a Nash submanifold and s : L — M be a section of f.

n

Then there exist a finite open Nash cover L C |J U; and sections s; : Uy — M of f
i=1

s.t. s|pau, = Silow, -

Theorem 14 Any semi-algebraic surjection f : X — Y of semi-algebraic sets has
a semi-algebraic section.

Theorem 15 Let f : M — N be a semi-algebraic map of Nash manifolds. Then
k

there exists a finite stratification of M by Nash manifolds M = L_J1]\42 s.t. flu, is

Nash. B



Definition 4 Let g be a Lie algebra of dimension n. Let p be its representation.
Define H'(g, p) to be the cohomologies of the complex:

Cla.p): 05 pLgopd (@) 2eps . S@E)epso

with the differential defined by

n+1

dw(Ty, ., Tpt1) = Z(—l)ip(xi)w(arl, ey T 1y Tig Ly ooy T )+
i=1

+ Z(—l)iﬂw([%, %’], L1y ey Tim1; Tigls ooy Tj—15 Tjpls ooy Tpy1)
i<j

where we interpret (g)"* ® p as anti-symmetric p-valued k-forms on g.
Remark 16 H'(g,p) is the i-th derived functor of the functor p — pS.

Theorem 17 Let G be a Nash group. Let X be a Nash G-manifold and E — X a
Nash G-equivariant bundle. LetY be a strictly simple Nash G-manifold. Suppose Y
and G are cohomologically trivial (i.e. all their cohomologies except H° vanish and
H° = R) and affine. Denote F = X XY . Note that the bundle EXQ% has Nash G-
equivariant structure given by diagonal action. Hence the relative De-Rham complex
DREJ(F — X) is a complex of representations of g. Then H'(g,GS(X,E)) =
Hi((DRES(F — X))3).

Proposition 18 Let G be a connected Nash group and F be a Nash G manifold
with strictly simple action. Denote X := G\ F and let E — X be a Nash bundle.
Then (GS(F,7*(F)))? = GS(X, E) where m : F' — X s the standard projection.

Corollary 19 Let G be a Nash group and X be a transitive Nash G manifold.
Let v € X and denote H := stabg(x). Consider the diagonal action of G on
X xXG. Let E — X x G be a G equivariant Nash bundle. Then GS(X x G, E)% =
GS({I’} X G,E|{$}Xg)b.

Theorem 20 Shapiro lemma. Let G be a Nash group and X be a transitive Nash
G manifold. Let x € X and denote H := stabg(z). Let E — X be a G equivariant
Nash bundle. Let V' be the fiber of E in x. Suppose G and H are cohomologically
trivial. Then H'(g,GS(X,E)) = H'(h,V).



