WF-holonomicity of constructible distributions on non-Archimedean local fields

A. Aizenbud

Weizmann Institute of Science

Joint with Raf Cluckers

http://www.wisdom.weizmann.ac.il/~aizenr/
Distributions

Definition

Test functions – smooth compactly supported functions / Schwartz functions.

Distributions – functionals on test functions.

Examples

Delta function \(\delta \), its derivative \(\delta' \), any locally \(L^1 \) function, \(S^p_S^\lambda \).

Operations with distributions:

- pullback
- push forward
- Fourier transform
- Derivation

Algebraic operations:
Distributions

Definition

Test functions – smooth compactly supported functions / Schwartz functions.
Distributions – functionals on test functions.
Examples
δ, its derivative δ', any locally L¹ function, etc.

Operations with distributions:
pullback
push forward
Fourier transform
Derivation
Algebraic operations:

A. Aizenbud
WF-holonomicity of constructible distributions 2/12
Definition

- **Test functions** – smooth compactly supported functions / Schwartz functions.
Distributions

Definition

- Test functions – smooth compactly supported functions / Schwartz functions.
- Distributions – functionals on test functions.

Examples

- Delta function δ
- Derivative of the delta function δ'
- Any locally L^1 function
- $S^p_S$$^\lambda$

Operations with distributions:

- Pullback
- Push forward
- Fourier transform
- Derivation

Algebraic operations:
Distributions

Definition

- Test functions – smooth compactly supported functions / Schwartz functions.
- Distributions – functionals on test functions.

Examples

Delta function δ, its derivative δ', any locally L^1 function, $|\rho|^\lambda$
Distributions

Definition

- Test functions – smooth compactly supported functions / Schwartz functions.
- Distributions – functionals on test functions.

Examples

Delta function δ, its derivative δ', any locally L^1 function, $|\rho|^\lambda$

Operations with distributions:
Distributions

Definition
- **Test functions** – smooth compactly supported functions / Schwartz functions.
- **Distributions** – functionals on test functions.

Examples
- Delta function δ, its derivative δ', any locally L^1 function, $|\rho|^\lambda$

Operations with distributions:
- pullback
Distributions

Definition
- Test functions – smooth compactly supported functions / Schwartz functions.
- Distributions – functionals on test functions.

Examples
- Delta function δ, its derivative δ', any locally L^1 function, $|\rho|^\lambda$

Operations with distributions:
- pullback
- push forward
Distributions

Definition

- *Test functions* – smooth compactly supported functions / Schwartz functions.
- *Distributions* – functionals on test functions.

Examples

Delta function δ, its derivative δ', any locally L^1 function, $|p|^\lambda$

Operations with distributions:

- pullback
- push forward
- Fourier transform
Distributions

Definition
- Test functions – smooth compactly supported functions / Schwartz functions.
- Distributions – functionals on test functions.

Examples
- Delta function δ, its derivative δ', any locally L^1 function, $|\rho|^\lambda$

Operations with distributions:
- pullback
- push forward
- Fourier transform
- Derivation
Distributions

Definition
- Test functions – smooth compactly supported functions / Schwartz functions.
- Distributions – functionals on test functions.

Examples
- Delta function δ, its derivative δ', any locally L^1 function, $|\rho|^\lambda$

Operations with distributions:
- pullback
- push forward
- Fourier transform
- Derivation
- Algebraic operations: $+, \cdot, \boxdot$
The Archimedean case

Definition

Holonomic distributions – distributions that satisfy lots of PDE:

Let $\xi > S^\hat{\cdot}$ be a distribution on vector space. ξ is holonomic iff

$$\dim \text{Char} \hat{\xi} = \dim \text{Zeros} \hat{\xi} \text{Sym} \hat{\xi} \leq \dim V.$$

Theorem (Bernstein 1970)

The class of holonomic distributions is closed under all of the operations above whenever these are defined.

$$\dim \text{Char} \hat{\xi} \leq \dim V.$$

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber 1980)

$\text{Char} \hat{\xi}$ is co-isotropic.

"All the distributions which appear in nature are holonomic." - A. Aizenbud
The Archimedean case

Definition

Holonomic distributions – *distributions that satisfy lots of PDE*:

\[
\xi > S \hat{\xi} \hat{V} \quad \text{is holonomic} \iff \dim \text{Char} \hat{\xi} = \dim \text{Zeros} \hat{\xi} \text{Sym} \hat{D}_S \xi = 0 \quad \text{dim } V.
\]

Theorem (Bernstein 1970)
The class of holonomic distributions is closed under all of the operations above whenever these are defined.

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber 1980)
\[\text{Char} \hat{\xi} \text{ is co-isotropic.}\]

"All the distributions which appear in nature are holonomic."

A. Aizenbud
Definition

Holonomic distributions – distributions that satisfy lots of PDE:
Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

A. Aizenbud
WF-holonomicity of constructible distributions 3/12
Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

$$\dim \text{Char}(\xi) := \dim(\text{Zeros}(\{\text{Sym}(D)|D\xi = 0\})) = \dim V.$$
The Archimedean case

Definition

Holonomic distributions – distributions that satisfy lots of PDE:

Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

$$\dim \text{Char}(\xi) := \dim(\text{Zeros}(\{\text{Sym}(D)|D\xi = 0\})) = \dim V.$$

Theorem (Bernstein ~1970)

The class of holonomic distributions is closed under all of the operations above whenever these are defined.

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber 1980)

$\text{Char}(\xi)$ is co-isotropic.

"All the distributions which appear in nature are holonomic."
The Archimedean case

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

$$ \dim \text{Char}(\xi) := \dim(\text{Zeros}(\{\text{Sym}(D)|D\xi = 0\})) = \dim V. $$

Theorem (Bernstein ~1970)

the class of holonomic distributions is closed under all of the operations above whenever these are defined
The Archimedean case

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

$$\dim \text{Char}(\xi) := \dim(\text{Zeros}(\{\text{Sym}(D)|D\xi = 0\})) = \dim V.$$

Theorem (Bernstein ~1970)

- the class of holonomic distributions is closed under all of the operations above whenever these are defined
- $\dim \text{Char}(\xi) \geq \dim V$.

"All the distributions which appear in nature are holonomic." - A. Aizenbud
The Archimedean case

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

$$\dim \text{Char}(\xi) = \dim \text{Zeros} \left(\{ \text{Sym}(D) | D\xi = 0 \} \right) = \dim V.$$

Theorem (Bernstein ~1970)

- the class of holonomic distributions is closed under all of the operations above whenever these are defined
- $\dim \text{Char}(\xi) \geq \dim V$.

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber ~1980)

$\text{Char}(\xi)$ is co-isotropic.
The Archimedean case

Definition

Holonomic distributions – distributions that satisfy lots of PDE: Let $\xi \in S^*(V)$ be a distribution on vector space. ξ is holonomic iff

$$\dim \text{Char}(\xi) := \dim(\text{Zeros}(\{\text{Sym}(D)|D\xi = 0\})) = \dim V.$$

Theorem (Bernstein ~1970)

- the class of holonomic distributions is closed under all of the operations above whenever these are defined
- $\dim \text{Char}(\xi) \geq \dim V.$

Theorem (Kashiwara-Kawai-Sato, Malgrange, Gaber ~1980)

$\text{Char}(\xi)$ is co-isotropic.

“All the distributions which appear in nature are holonomic.”
Wave front set

Observation \(\hat{\xi} \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi > S \hat{\xi} \). \(\hat{\xi} \) is a distribution on vector space. We say that \(\xi \) is smooth at point \(x \) and direction \(v \) if \(\hat{\rho \xi} \) is rapidly decaying at direction \(v \), where \(\rho \) is a cut-off function of a small enough neighborhood of \(x \).

\[\text{WF} \hat{\xi} \]

Theorem (Hörmander 1980) \(\text{WF} \hat{\xi} \) is invariant w.r.t. diffeomorphisms.

\[\text{WF} \hat{\xi} \]
Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.
Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi \in S^*(V) \) is a distribution on vector space.
Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi \in S^* (V) \) is a distribution on vector space.

- We say that \(\xi \) is smooth at point \(x \) and direction \(v \) if \(\hat{\rho \xi} \) is rapidly decaying at direction \(v \), where \(\rho \) is a cut-off function of a small enough neighborhood of \(x \)
Wave front set

Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi \in S^*(V) \) is a distribution on vector space.

- We say that \(\xi \) is smooth at point \(x \) and direction \(v \) if \(\hat{\rho_\xi} \) is rapidly decaying at direction \(v \), where \(\rho \) is a cut-off function of a small enough neighborhood of \(x \).
- \(WF(\xi) = \{(x, v) \in T^*V | \xi \text{ is not smooth at } (x, v)\} \).
Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi \in S^*(V) \) is a distribution on vector space.

- We say that \(\xi \) is smooth at point \(x \) and direction \(v \) if \(\hat{\rho}_x \xi \) is rapidly decaying at direction \(v \), where \(\rho \) is a cut-off function of a small enough neighborhood of \(x \).

- \(WF(\xi) = \{(x, v) \in T^* V|\xi \text{ is not smooth at } (x, v)\} \).

Theorem (Hörmander ~1980)

\(WF(\hat{\xi}) \) is invariant w.r.t. diffeomorphisms.
Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi \in S^*(V) \) is a distribution on vector space.

- We say that \(\xi \) is smooth at point \(x \) and direction \(v \) if \(\hat{\rho} \xi \) is rapidly decaying at direction \(v \), where \(\rho \) is a cut-off function of a small enough neighborhood of \(x \).
- \(WF(\xi) = \{ (x, v) \in T^*V | \xi \text{ is not smooth at } (x, v) \} \).

Theorem (Hörmander \(\sim 1980 \))

- \(WF(\xi) \) is invariant w.r.t. diffeomorphisms.
Wave front set

Observation

\(\xi \) is smooth iff \(\hat{\xi} \) is rapidly decaying.

Definition

Let \(\xi \in S^*(V) \) is a distribution on vector space.

- We say that \(\xi \) is smooth at point \(x \) and direction \(v \) if \(\hat{\rho}\xi \) is rapidly decaying at direction \(v \), where \(\rho \) is a cut-off function of a small enough neighborhood of \(x \).

\[\text{WF}(\xi) = \{(x, v) \in T^* V | \xi \text{ is not smooth at } (x, v) \} \]

Theorem (Hörmander \(\sim 1980 \))

- \(\text{WF}(\xi) \) is invariant w.r.t. diffeomorphisms.
- \(\text{WF}(\xi) \subset \text{Char}(\xi) \).
p-adic numbers

Definition

P-adic numbers are "numbers" who have a "p-cimal" presentation which is finite after the "p-cimal point" and possibly infinite before it.

Alternatively: The field of p-adic numbers \(\mathbb{Q}_p \) is the completion of \(\mathbb{Q} \) w.r.t. the p-adic norm:

\[
V_p = \frac{\mathbb{Z}}{p^{\mathbb{N}}}.
\]

Although we consider p-adic numbers as arguments, the values of our functions are always complex. Smooth functions on \(\mathbb{Q}_p \) are locally constant functions. Rapidly decaying functions are functions with compact support. This gives us the notion of distribution.

Instead of using the periodic exponent \(e^{ix} \) one uses a fixed additive character \(\psi^* \). This gives us the notion of Fourier transform and wave front set.

/ No action of differential operators on distributions.
p-adic numbers

Definition

- **p-adic numbers** are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:
Definition

- p-adic numbers are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- The field of p-adic numbers \(\mathbb{Q}_p \) is the completion of \(\mathbb{Q} \) w.r.t. the p-adic norm:

\[
\left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1.
\]
Definition

- **p-adic numbers** are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- **The field of p-adic numbers** \(\mathbb{Q}_p \) is the completion of \(\mathbb{Q} \) w.r.t. the \(p \)-adic norm:

 \[
 \left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1.
 \]

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
Definition

- **p-adic numbers** are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- The field of p-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. the p-adic norm:

$$\left| p^k \frac{m}{n} \right| = p^{-k}, \ \text{where: } \gcd(p, n) = \gcd(p, m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
p-adic numbers

Definition

- p-adic numbers are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- The field of p-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. the p-adic norm:

$$\left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1.$$

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \mathbb{Q}_p are locally constant functions.
- Rapidly decaying functions are functions with compact support.
\textbf{Definition}

- \textit{p-adic numbers} are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- \textit{The field of p-adic numbers} \(\mathbb{Q}_p\) \textit{is the completion of} \(\mathbb{Q}\) \textit{w.r.t. the p-adic norm:}

\[\left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1. \]

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \(\mathbb{Q}_p\) are locally constant functions.
- Rapidly decaying functions are functions with compact support.
- This gives us the notion of distribution.
Definition

- **p-adic numbers** are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- The field of **p-adic numbers** \(\mathbb{Q}_p \) is the completion of \(\mathbb{Q} \) w.r.t. the **p-adic norm**:

\[
\left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1.
\]

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \(\mathbb{Q}_p \) are locally constant functions.
- Rapidly decaying functions are functions with compact support.
- This gives us the notion of distribution.
- Instead of using the periodic exponent \(e^{ix} \) one uses a fixed additive character \(\psi(x) \).
p-adic numbers

Definition

- **p-adic numbers** are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- **The field of p-adic numbers** \(\mathbb{Q}_p \) **is the completion of** \(\mathbb{Q} \) **w.r.t. the p-adic norm:**

\[
\left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1.
\]

- Although we consider p-adic numbers as arguments, the values of our functions are always complex.
- Smooth functions on \(\mathbb{Q}_p \) are locally constant functions.
- Rapidly decaying functions are functions with compact support.
- This gives us the notion of distribution.
- Instead of using the periodic exponent \(e^{ix} \) one uses a fixed additive character \(\psi(x) \).
- This gives us the notion of Fourier transform and wave front set.
Definition

- *p-adic numbers* are “numbers” who have a “p-cimal” presentation which is finite after the “p-cimal point” and possibly infinite before it.

Alternatively:

- The field of *p-adic numbers* \(\mathbb{Q}_p \) is the completion of \(\mathbb{Q} \) w.r.t. the *p-adic norm*:

 \[
 \left| p^k \frac{m}{n} \right| = p^{-k}, \quad \text{where: } \gcd(p, n) = \gcd(p, m) = 1.
 \]

Although we consider p-adic numbers as arguments, the values of our functions are always complex.

- Smooth functions on \(\mathbb{Q}_p \) are locally constant functions.
- Rapidly decaying functions are functions with compact support.
- This gives us the notion of distribution.
- Instead of using the periodic exponent \(e^{ix} \) one uses a fixed additive character \(\psi(x) \).
- This gives us the notion of Fourier transform and wave front set.
- No action of differential operators on distributions.
Wave front holonomicity

Theorem (A. 2008)

\[\text{WF} \hat{\xi} \] includes Lagrangian, in particular
\[\dim \text{WF} \hat{\xi} \leq \dim V. \]

Definition
\(\xi \) is WF-holonomic if \(\text{WF} \hat{\xi} \) is isotropic. In particular
\[\dim \text{WF} \hat{\xi} \leq \dim V. \]

Theorem (A.-Drinfeld 2011)

Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.
WF-holonomicity is stable under proper push-forward and submersive pull-back.

/ WF-holonomicity is not stable under Fourier transform.
Theorem (A. 2008)

$WF(\xi)$ includes Lagrangian, in particular $\dim WF(\xi) \geq \dim V$.
Theorem (A. 2008)

\(\text{WF}(\xi) \) includes Lagrangian, in particular \(\dim \text{WF}(\xi) \geq \dim V \).

Definition

\(\xi \) is WF-holonomic if \(\text{WF}(\xi) \) is isotropic. In particular \(\dim \text{WF}(\xi) = \dim V \).
Wave front holonomicity

Theorem (A. 2008)

$WF(\xi)$ includes Lagrangian, in particular $\dim WF(\xi) \geq \dim V$.

Definition

ξ is \textit{WF-holonomic} if $WF(\xi)$ is isotropic. In particular $\dim WF(\xi) = \dim V$.

Theorem (A.-Drinfeld 2011)

Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic. WF-holonomicity is stable under proper push-forward and submersive pull-back. But WF-holonomicity is not stable under Fourier transform.
Theorem (A. 2008)

$WF(\xi)$ includes Lagrangian, in particular $\dim WF(\xi) \geq \dim V$.

Definition

ξ is WF-holonomic if $WF(\xi)$ is isotropic. In particular $\dim WF(\xi) = \dim V$.

Theorem (A.-Drinfeld 2011)

- Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.
Wave front holonomicity

Theorem (A. 2008)

$WF(\xi)$ includes Lagrangian, in particular $\dim WF(\xi) \geq \dim V$.

Definition

ξ is WF-holonomic if $WF(\xi)$ is isotropic. In particular $\dim WF(\xi) = \dim V$.

Theorem (A.-Drinfeld 2011)

- Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.
- WF-holonomicity is stable under proper push-forward and submersive pull-back.
Theorem (A. 2008)

\[\text{WF}(\xi) \text{ includes Lagrangian, in particular } \dim \text{WF}(\xi) \geq \dim V. \]

Definition

\(\xi \text{ is WF-holonomic if } \text{WF}(\xi) \text{ is isotropic. In particular } \dim \text{WF}(\xi) = \dim V \).

Theorem (A.-Drinfeld 2011)

- Many distributions with algebraic description (and their Fourier transforms) are WF-holonomic.
- WF-holonomicity is stable under proper push-forward and submersive pull-back.

😊 WF-holonomicity is not stable under Fourier transform.
Constructible functions

Functions that have a nice formula.

Examples
- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition
The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

Non-example:
\log.

Theorem (Clukers-Loeser 2005)
The class of constructible functions is closed under the above operations, whenever defined.

"All the functions which appear in nature are constructible"
Constructible functions

Functions that have a nice formula.

Examples

Absolute value of a rational function.
Valuation (log of the absolute value) of a rational function.
ψ composed with a rational function.
Characteristic function of a ball.

Definition
The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $1 \log$.

Theorem (Clukers-Loeser 2005)
The class of constructible functions is closed under the above operations, whenever defined.

"All the functions which appear in nature are constructible"
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

Non-example:

\log_2.

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above operations, whenever defined.

"All the functions which appear in nature are constructible"
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $\frac{1}{\log}$.

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above operations, whenever defined.

"All the functions which appear in nature are constructible"
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $\frac{1}{\log}$.

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above operations, whenever defined.
Constructible functions

Functions that have a nice formula.

Examples

- Absolute value of a rational function.
- Valuation (log of the absolute value) of a rational function.
- ψ composed with a rational function.
- Characteristic function of a ball.

Definition

The algebra of constructible functions is the algebra generated by (generalizations of) the above examples.

non-example: $\frac{1}{\log}$.

Theorem (Clukers-Loeser 2005)

The class of constructible functions is closed under the above operations, whenever defined.

“All the functions which appear in nature are constructible.”
(p-adic) Wavelet transform

Definition

Let F be a p-adic (more generally non-Archimedean local) field. Define:

$$
\text{WL} S \hat{\xi} \hat{V} C \hat{a}, b \hat{\xi, 1} B \hat{a}, S \hat{e}
$$

It is easy to see that WL is 1-1.
Definition

Let F be a p-adic (more generally non-Archimedean local) field.
(p-adic) Wavelet transform

Definition

Let F be a p-adic (more generally non-Archimedean local) field. Define:
(p-adic) Wavelet transform

Definition

Let F be a p-adic (more generally non-Archimedean local) field. Define:

$$WL : S^*(V) \rightarrow C^\infty(V \times F^\times)$$

It is easy to see that WL is 1-1.
(p-adic) Wavelet transform

Definition

Let \(F \) be a p-adic (more generally non-Archimedean local) field. Define:

\[
WL : S^*(V) \to C^\infty(V \times F^\times)
\]

\[
WL(\xi)(a, b) := \langle \xi, 1_{B(a, |b|)} \rangle
\]
Definition

Let F be a p-adic (more generally non-Archimedean local) field. Define:

$$WL : S^*(V) \to C^\infty(V \times F^\times)$$

$$WL(\xi)(a, b) := \langle \xi, 1_{B(a, |b|)} \rangle$$

It is easy to see that WL is 1-1.
Constructible distributions

Definition

ξ is constructible iff $\hat{\mathcal{L}} \xi$ is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

The class of constructible distributions is closed under all the above operations, whenever defined.

Constructible distributions are smooth almost everywhere.

"All the distributions which appear in nature are constructible"

A. Aizenbud
Constructible distributions

Definition

ξ is constructible iff $WL(\xi)$ is constructible.
Constructible distributions

Definition

ξ is constructible iff $WL(\xi)$ is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

The class of constructible distributions is closed under all the above operations, whenever defined.

"All the distributions which appear in nature are constructible"

A. Aizenbud
Constructible distributions

Definition

\(\xi \) is constructible iff \(WL(\xi) \) is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

The class of constructible distributions is closed under all the above operations, whenever defined.
Definition

ξ is constructible iff WL(ξ) is constructible.

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

- The class of constructible distributions is closed under all the above operations, whenever defined.
- Constructible distributions are smooth almost everywhere.
Constructible distributions

Definition

\[\xi \text{ is constructible iff } \text{WL}(\xi) \text{ is constructible.} \]

Theorem (Cluckers-Halupczok-Loeser-Raibaut, 2018)

- The class of constructible distributions is closed under all the above operations, whenever defined.
- Constructible distributions are smooth almost everywhere.

“All the distributions which appear in nature are constructible”
Main Result

Theorem (A.-Cluckers 2019)
Constructible distributions are WF-holonomic.

Main ingredients of the proof.

Regularization: a constructible distribution can be extended from an open set.

Resolution of singularities in the constructible (in fact, definable) setting.

Key-Lemma: a smooth constructible function on an open set can be extended to a holonomic constructible distribution.
Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic.
Main Result

Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic.

Main ingredients of the proof.
Main Result

Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic.

Main ingredients of the proof.

- **Regularization:** a constructible distribution can be extended from an open set.
Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic.

Main ingredients of the proof.

- **Regularization**: a constructible distribution can be extended from an open set.
- **Resolution of singularities in the constructible (in fact, definable) setting.**
Theorem (A.-Cluckers 2019)

Constructible distributions are WF-holonomic.

Main ingredients of the proof.

- **Regularization:** a constructible distribution can be extended from an open set.
- **Resolution of singularities in the constructible (in fact, definable) setting.**
- **Key-Lemma:** a smooth constructible function on an open set can be extended to an holonomic constructible distribution.
Idea of the proof.

ξ

S
U

is smooth for open dense
U.

Extend ξ
S
U

to an holonomic constructible distribution
ξ
œ

Let
η
ξ
œ
ξ

We have

dim
supp
ˆ
η
µ

½

V

Resolve
Z

supp
ˆ
η
µ

by a smooth manifold:
P
M
Z

Let
Z
œ
`Z
open dense s.t.
p
1
ˆ
Z
œ
µ
Z
œ

Extend
p
‡
ˆ
η
S
Z
œ
µ

on
M

By the induction assumption,
µ
is WF-holonomic.

Thus
p
‡
ˆ
µ
µ
is constructible WF-holonomic.

By the induction assumption
p
‡
ˆ
µ
µ
η
is WF-holonomic.
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.

Let $\eta = \xi'$. We have $\dim \operatorname{supp} \hat{\eta} = \dim V$.

Resolve $Z = \operatorname{supp} \hat{\eta}$ by a smooth manifold: $p: Z \to M$.

Let $Z = \{Z \in U \text{ s.t. } p^{-1}(Z) = \emptyset\}$. Extend $p: \hat{\eta}$ to constructible distribution μ on M.

By the induction assumption, μ is WF-holonomic.

Thus $p: \hat{\mu}$ is constructible WF-holonomic.

By the induction assumption $p: \hat{\mu}$ is WF-holonomic.
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.
- Let $\eta = \xi' - \xi$. We have $\dim \text{supp}(\eta) < \dim V$.
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.
- Let $\eta = \xi' - \xi$. We have $\dim \text{supp}(\eta) < \dim V$.
- Resolve $Z = \text{supp}(\eta)$ by a smooth manifold:

$$p : M \to Z$$
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.
- Let $\eta = \xi' - \xi$. We have $\dim \text{supp}(\eta) < \dim V$.
- Resolve $Z = \text{supp}(\eta)$ by a smooth manifold:

$$p : M \to Z$$

- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.
- Let $\eta = \xi' - \xi$. We have $\dim \text{supp}(\eta) < \dim V$.
- Resolve $Z = \text{supp}(\eta)$ by a smooth manifold:

$$p : M \to Z$$

- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend $p^*(\eta|_{Z'})$ to constructible distribution μ on M.

A. Aizenbud
WF-holonomicity of constructible distributions 11 / 12
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.
- Let $\eta = \xi' - \xi$. We have $\dim \text{supp}(\eta) < \dim V$.
- Resolve $Z = \text{supp}(\eta)$ by a smooth manifold:
 \[p : M \to Z \]
- Let $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend $p^*(\eta|_{Z'})$ to constructible distribution μ on M.
- By the induction assumption, μ is WF-holonomic.
Idea of the proof.

- \(\xi|_U \) is smooth for open dense \(U \).
- Extend \(\xi|_U \) to an holonomic constructible distribution \(\xi' \).
- Let \(\eta = \xi' - \xi \). We have \(\dim \text{supp}(\eta) < \dim V \).
- Resolve \(Z = \text{supp}(\eta) \) by a smooth manifold:
 \[
p : M \to Z
 \]
- Let \(Z' \subset Z \) open dense s.t. \(p^{-1}(Z') \cong Z' \).
- Extend \(p^*(\eta|_{Z'}) \) to constructible distribution \(\mu \) on \(M \).
- By the induction assumption, \(\mu \) is WF-holonomic.
- Thus \(p_*(\mu) \) is constructible WF-holonomic.
Idea of the proof.

- $\xi|_U$ is smooth for open dense U.
- Extend $\xi|_U$ to an holonomic constructible distribution ξ'.
- Let $\eta = \xi' - \xi$. We have $\dim \text{supp}(\eta) < \dim V$.
- Resolve $Z = \text{supp}(\eta)$ by a smooth manifold:

$$p : M \rightarrow Z$$

- $Z' \subset Z$ open dense s.t. $p^{-1}(Z') \cong Z'$.
- Extend $p^* (\eta|_{Z'})$ to constructible distribution μ on M.
- By the induction assumption, μ is WF-holonomic.
- Thus $p_*(\mu)$ is constructible WF-holonomic.
- By the induction assumption $p_*(\mu) - \eta$ is WF-holonomic.
The Key Lemma

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

WLOG we can assume that the function f has the form:

$$
\psi \hat{p}_1 \ast S \hat{p}_2 S \hat{p}_3 \ast
$$

Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i u_i m_i$, where u_i are units and m_i are monomials. While u_2 and u_3 can be ignored, u_1 cannot. Instead we can swallow it in m_1.

Now we prove the Key lemma for the complement of the origin. We are using an inductive assumption both about the Key lemma and the main theorem. Adding 1 point does not affect WF-holonomicity.
Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

We can assume that the function f has the form:

$$
\psi \hat{p}_1 \hat{S} p_2 S \hat{p}_3 \hat{S} v
$$

Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i u_i m_i$, where u_i are units and m_i are monomials. While u_2 and u_3 can be ignored, u_1 cannot. Instead we can swallow it in m_1.
Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

- WLOG we can assume that the function f has the form:
\[\psi(p_1)|p_2|val(p_3) \]
The Key Lemma

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

- WLOG we can assume that the function f has the form:
 $\psi(p_1)|p_2|\text{val}(p_3)$

- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i = u_i m_i$, where u_i are units and m_i are monomials.
The Key Lemma

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

- WLOG we can assume that the function f has the form:
 \[\psi(p_1)|p_2|val(p_3) \]
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i = u_i m_i$, where u_i are units and m_i are monomials.
- While u_2 and u_3 can be ignored, u_1 cannot.
Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

- WLOG we can assume that the function f has the form:
 \[\psi(p_1)p_2\text{val}(p_3) \]
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i = u_im_i$, where u_i are units and m_i are monomials.
- While u_2 and u_3 can be ignored, u_1 cannot.
- Instead we can swallow it in m_1.
The Key Lemma

Key Lemma

Let f be a constructible function on an open (definable) set $U \subseteq V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

- WLOG we can assume that the function f has the form:
 $$\psi(p_1)|p_2|val(p_3)$$

- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i = u_i m_i$, where u_i are units and m_i are monomials.

- While u_2 and u_3 can be ignored, u_1 cannot.

- Instead we can swallow it in m_1.

- Now we prove the Key lemma for the complement of the origin.
Key Lemma

Let \(f \) be a constructible function on an open (definable) set \(U \subset V \). Then \(f \) can be extended to a constructible WF-holonomic distribution on \(V \).

Idea of the Proof.

- WLOG we can assume that the function \(f \) has the form:
 \[\psi(p_1)|p_2|\text{val}(p_3) \]
- Using resolution of singularities we may assume that \(U \) is the complement of the coordinate hyper planes and \(p_i = u_i m_i \), where \(u_i \) are units and \(m_i \) are monomials.
- While \(u_2 \) and \(u_3 \) can be ignored, \(u_1 \) cannot.
- Instead we can swallow it in \(m_1 \).
- Now we prove the Key lemma for the complement of the origin.
- We are using an inductive assumption both about the Key lemma and the main theorem.
The Key Lemma

Key Lemma

Let f be a constructible function on an open (definable) set $U \subset V$. Then f can be extended to a constructible WF-holonomic distribution on V.

Idea of the Proof.

- WLOG we can assume that the function f has the form:
 \[\psi(p_1)p_2\text{val}(p_3) \]
- Using resolution of singularities we may assume that U is the complement of the coordinate hyper planes and $p_i = u_i m_i$, where u_i are units and m_i are monomials.
- While u_2 and u_3 can be ignored, u_1 cannot.
- Instead we can swallow it in m_1.
- Now we prove the Key lemma for the complement of the origin.
- We are using an inductive assumption both about the Key lemma and the main theorem.
- Adding 1 point does not affect WF-holonomicity.