Gelfand Pairs

A pair of compact topological groups \(G \supset H \) is called a **Gelfand pair** if the following equivalent conditions hold:

- \(L^1(G/H) \) decomposes to direct sum of distinct irreducible representations of \(G \).
- for any irreducible representation \(\pi \) of \(G \), \(dim \pi \leq 1 \).
- for any irreducible representation \(\pi \) of \(G \), \(dim \text{Hom}_{\pi}(\rho,C) \leq 1 \).
- the algebra of \(\pi \)-invariant functions on \(G \), \(C^\ast(G/H) \), is commutative w.r.t. convolution.

A pair of compact topological groups \(G \supset H \) is called a **strong Gelfand pair** if the following equivalent conditions hold:

- the pair \(G \supset H \) is a Gelfand pair.
- for any irreducible representations \(\pi \) of \(G \) and \(\rho \) of \(H \), \(\text{dim} \text{Hom}_{\pi}(\rho,C) \leq 1 \).
- the algebra of \(\pi \)-invariant functions on \(G \), \(C^\ast(G/H) \), is commutative w.r.t. convolution.

An analogous criterion works for strong Gelfand pairs.

Gelfand Trick

Let \(\theta \) be an involutive anti-automorphism of \(G \) (i.e. \(\theta(g)\theta(g) = g \)) and assume \(\theta(H) = H \). Suppose that \(\theta(f) = f \) for all \(\pi \)-invariant functions \(f \) on \(G \). Then \((G,H) \) is a Gelfand pair.

Tools to Work with Invariant Distributions

Integration of distributions – Frobenius Decomposition

\[\mathcal{D} \text{ modules well represent } \mathcal{D}^\ast \]

Symmetric Pairs

- A pair \((G,H) \) is called a symmetric pair if \(H = G' \) for some involution \(\theta \).
- We denote \(\theta(g) = g^{-1} \).

Symmetric Pairs

Gelfand Pairs

A pair of groups \((G,H) \) is called a Gelfand pair if for any irreducible (admissible) representation \(\rho \) of \(G \),

\[\dim \text{Hom}_{\nu}(\rho,C) \leq 1. \]

For most pairs, this implies that \(\dim \text{Hom}_{\nu}(\rho,C) \leq 1 \).

Gelfand-Kazhdan Distributional Criterion

Let \(\rho \) be an involutive anti-automorphism of \(G \) and assume \(\rho(H) = H \).

Suppose that \(\rho(\xi) = \xi \) for all \(\pi \)-invariant distributions \(\xi \) on \(G \).

Then \((G,H) \) is a Gelfand pair.

An analogous criterion works for strong Gelfand pairs.

Results

Strong Gelfand Pairs

Let \((G,H) \) be a Gelfand pair.

- If \(G \) is compact:
 - \(\pi \) preserves closed \(\pi \)-invariant distributions on \(H \).

- If \(G \) is noncompact:
 - \(\pi \) preserves closed \(\pi \)-invariant distributions on \(H \).

\[\sigma(x,y) = (Ax,y) \]

\[\mathcal{X}(x,y) = (Ax,y) \]

Example

Any \(\pi \)-invariant distribution on the plane \(\mathbb{R}^2 \) is invariant with respect to the flip \(e \).

This example implies that \((GL_n, GL_n) \) is a strong Gelfand pair.

Tools to Work with Invariant Distributions

Analysis

Integration of distributions – Frobenius Decomposition

Geometric Invariant Theory

Luna Slice Theorem

Symmetric Pairs

We call the property (2) regularity. We conjecture that all symmetric pairs are regular. This will imply the conjecture that every good symmetric pair is a Gelfand pair.

Regular pairs

<table>
<thead>
<tr>
<th>Pair</th>
<th>p-adic case</th>
<th>real case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GL_n, SL_n)</td>
<td>GL_n</td>
<td>GL_n</td>
</tr>
<tr>
<td>(GL_n, SL_n)</td>
<td>SL_n</td>
<td>SL_n</td>
</tr>
<tr>
<td>(O(n), O(n))</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>(SL_n, SU_n)</td>
<td>SL_n</td>
<td>SU_n</td>
</tr>
</tbody>
</table>

Symmetric Pairs

We call the property (2) regularity. We conjecture that all symmetric pairs are regular. This will imply the conjecture that every good symmetric pair is a Gelfand pair.

Regular pairs

<table>
<thead>
<tr>
<th>Pair</th>
<th>p-adic case</th>
<th>real case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GL_n, SL_n)</td>
<td>GL_n</td>
<td>GL_n</td>
</tr>
<tr>
<td>(GL_n, SL_n)</td>
<td>SL_n</td>
<td>SL_n</td>
</tr>
<tr>
<td>(O(n), O(n))</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>(SL_n, SU_n)</td>
<td>SL_n</td>
<td>SU_n</td>
</tr>
</tbody>
</table>